

The 2nd International Resource Recovery Conference

VIA-NITRITE SELECTION OF PHA STORING BIOMASS THROUGH FERMENTATION LIQUID OF CELLULOSIC PRIMARY SLUDGE

A. Cherubin¹, N. Frison¹, A.L. Eusebi², <u>F. Fatone</u>²

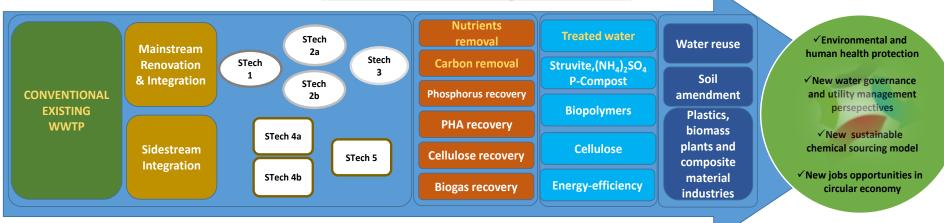
- 1. LabICAB-Verona, Department of Biotechnology, University of Verona, Verona ITALY
- 2. LabICAB-Ancona, Department SIMAU, Polytechnic University of Marche, Ancona ITALY

Nutrients

Water

Outline

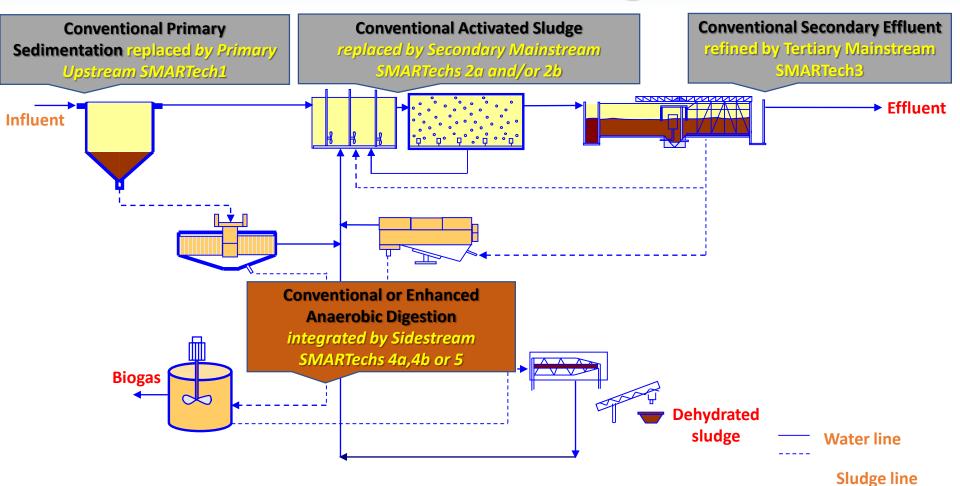
- The Horizon2020 «SMART-Plant» Innovation Action
- Cellulose in wastewater and recovery/valorization routes
- Controlled fermentation to recover propionate-rich volatile fatty acids
- Bio(co)polymers (PHB-coPHV) production in the sidestream SCEPPHAR system
- What's next: scale-up to demo in real environment at Carbonera WRRF



The Horizon2020 "SMART-Plant" Innovation Action Scale-up of low-carbon footprint MAterial Recovery Techniques for upgrading existing wastewater treatment Plants

www.smart-plant.eu

The overall target of SMART-Plant is to validate and to address to the market a portfolio of SMARTechnologies that, singularly or combined, can renovate and upgrade existing wastewater treatment plants and give the added value of instigating the paradigm change towards efficient wastewater-based bio-refineries.



2nd International Resource Recovery Conference

UNIVERSITÀ

The SMARTechnologies to integrate and renovate existing WWTPs

Key Enabling Strategy: upstream solid concentration, integration and innovation of the sewage sludge treatment, energy efficient mainstream treatment for water reuse

2nd International Resource Recovery Conference

JNIVERSITÀ

The WWTPs integrated by SMART-Plant to WRRFs

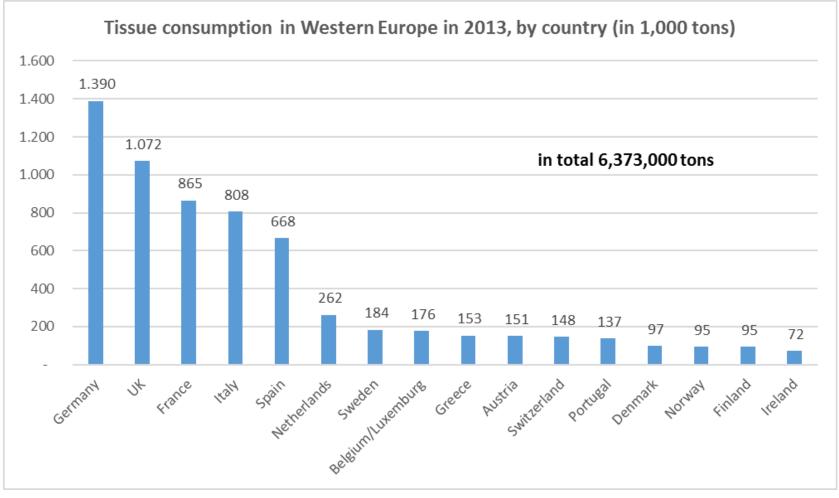
SMARTec	Integrated	Key enabling process(es)	SMART-product(s)
h n.	municipal WRRF		
1	Geestmerabacht	Upstream dynamic fine-screen	Cellulosic sludge, refined
	(Netherlands)	and post-processing of cellulosic	clean cellulose
		sludge	
2a	Karmiel (Israel)	Mainstream polyurethane-based	Biogas, Energy-efficient
		anaerobic biofilter	water reuse
2b	Manresa (Spain)	Mainstream SCEPPHAR	P-rich sludge, PHA
3	Cranfield (UK)	Mainstream tertiary hybrid ion	Nutrients
		exchange	
4a	Carbonera (Italy)	Sidestream SCENA+conventional	P-rich sludge, VFA
		AD	
4b	Psyttalia (Greece)	Sidestream SCENA+enhanced AD	P-rich sludge
5	Carbonera (Italy)	Sidestream SCEPPHAR	PHA, struvite, VFA

SMART-Plant value chains, business plan and market deployment strategy

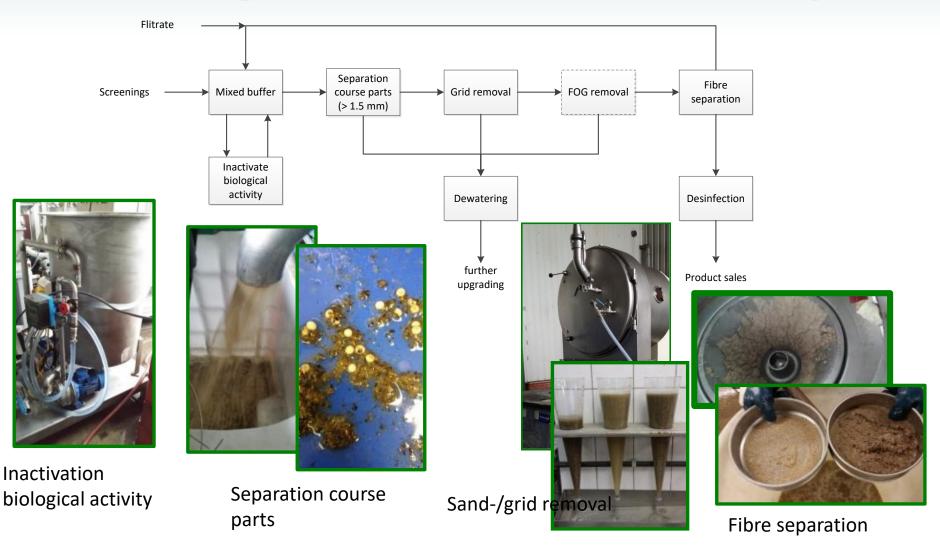
2nd International Resource Recovery Conference

JNIVERSITÀ

Resource recovery optimization? What about toilet paper?


- ✓ 12 to 18 kg per person per year
- \checkmark 8.5 pieces of paper per visit to the restroom
- ✓ On average, a person spends 43 hours a year on the toilet
- ✓ 70% folds the sheets before using them, 29% make a proper use

Facts and figures


Source: www.statista.com

SMARTech1: Primary (upstream) dynamic sieving and clean cellulose recovery

2nd International Resource Recovery Conference

UNIVERSITÀ

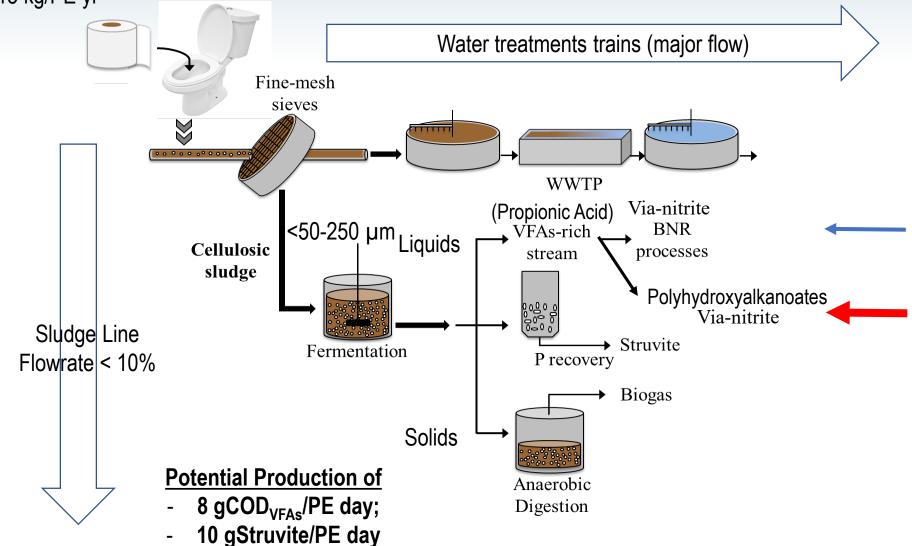
SMARTech1: Primary (upstream) dynamic sieving and clean cellulose recovery

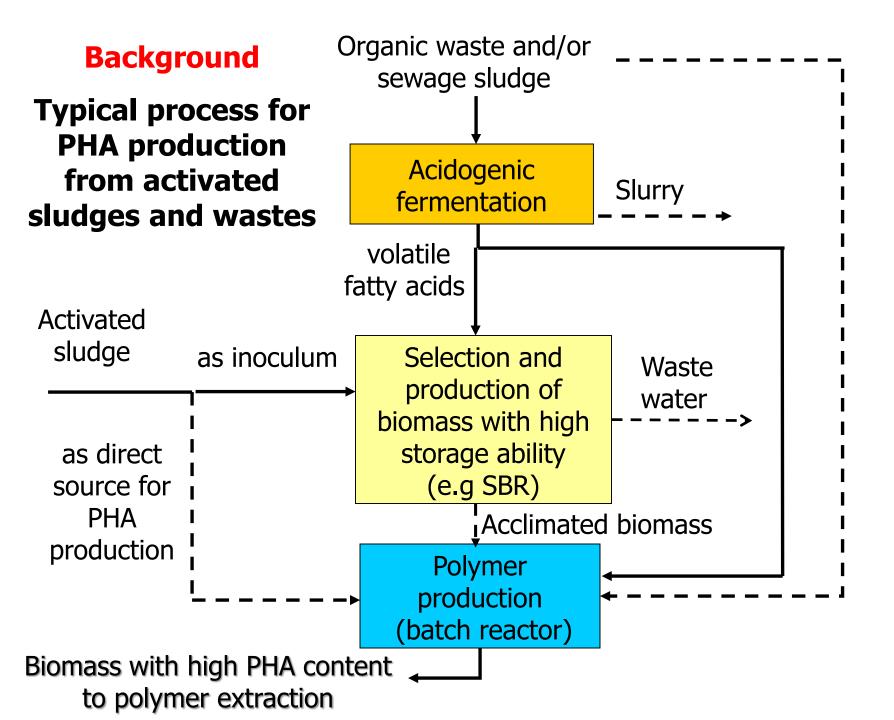
- 79% cellulose fiber,
- 5 % other organics,
- 6% inorganic (ash),
- 10% other contaminants (average in The Netherlands).
 Potentially marketable product, but the economic feasibility depends mainly on savings at the WWTP

Market development

Marketing and valorization of recovered cellulose

- ✓ Reuse in asphalt
- ✓ Raw material for composite
- Insulation materials (In development, not sure yet)

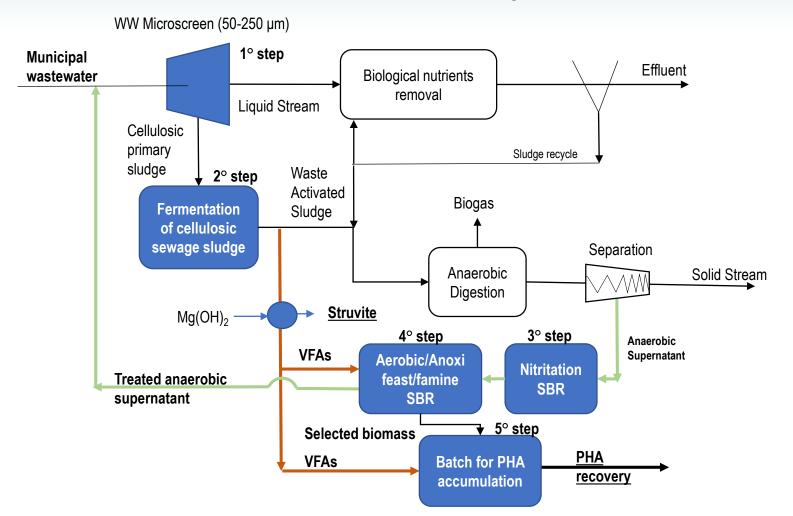



Novel SMART-Plant demos for valorization of cellulosic sludge 5-15 kg/PE yr

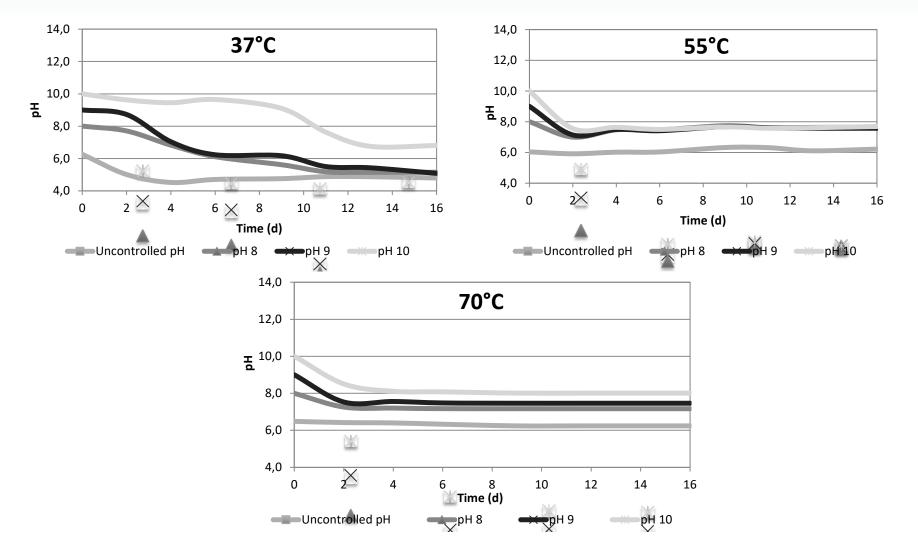
2nd International Resource Recovery Conference

The SMART-Plant innovation:

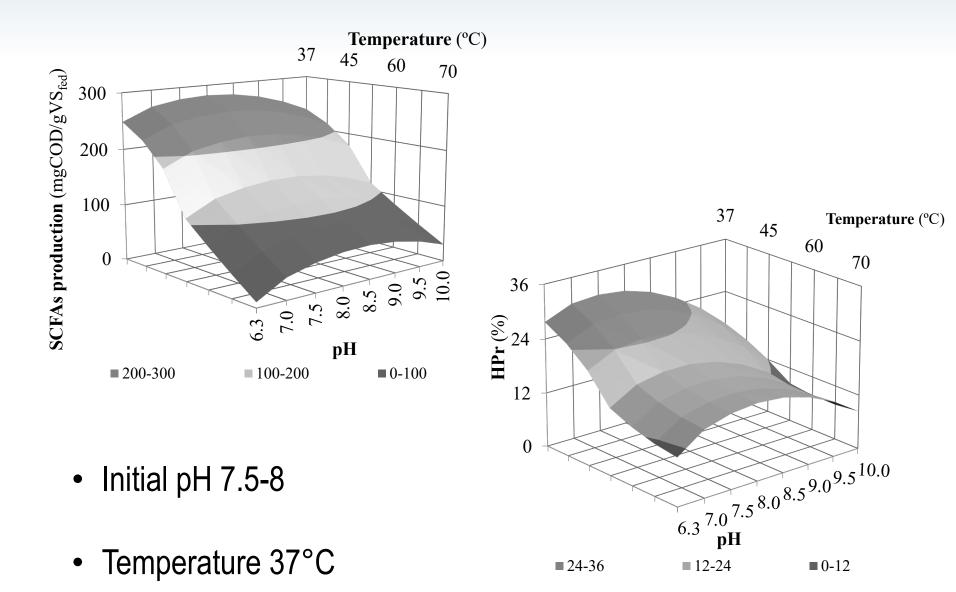
- To integrate the energy-efficient via-nitrite nitrogen removal with the PHA recovery → major interest of the water utility
- To adopt anoxic (via-nitrite) famine conditions to optimize energy consumptions
- Phosphorus (struvite) recovery even to support the balance of nitrogen and phosphorus to the PHA recovery system
- To optimize the system using primary cellulosic sludge → IRRC2017



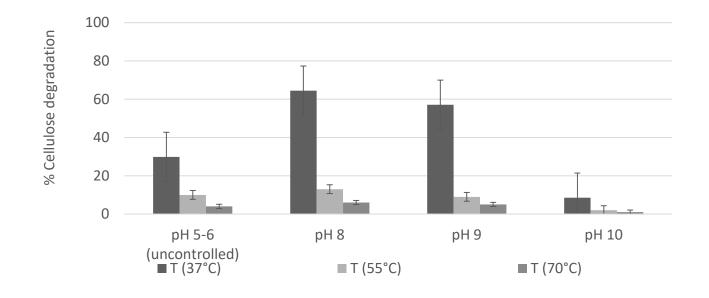
Sidestream S.C.E.P.P.H.A.R.: Short-Cut Enhanced Phosphorus and PHA recovery



Outline of the batch Cellulosic Fermentation experiments



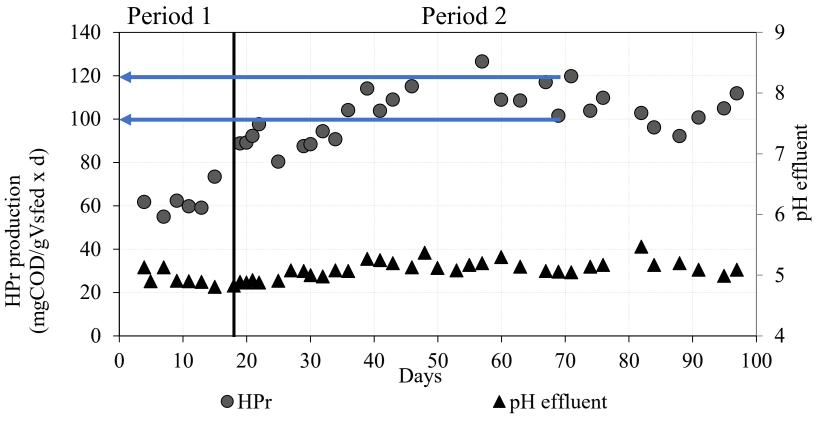
Optimal parameters for the recovery of Propionic Acid



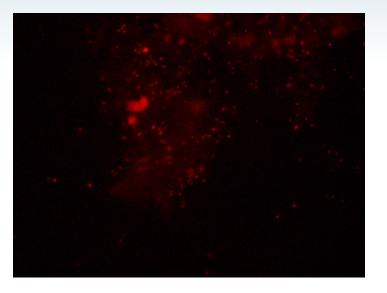
2nd International Resource Recovery Conference

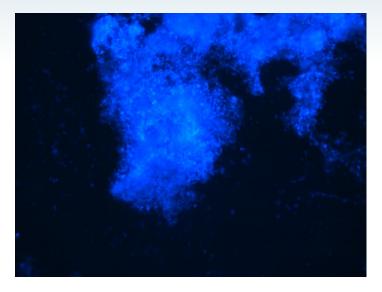
Cellulose biodegradation

Residual sieved material (250 µm) after fermentation



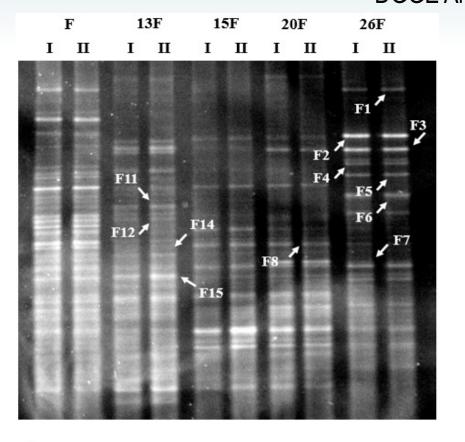
Sequencing Batch Fermentation Reactor

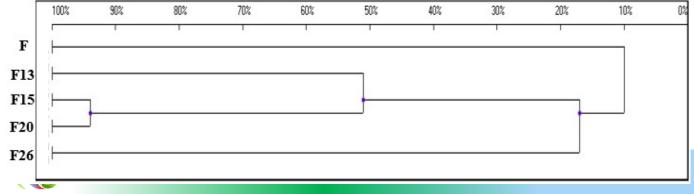

- Period 1: uncontrolled pH; Period 2: influent pH 8
- Stable production of propionic acid during period 2
- Propionic acid: 30-35 % SCFA



FISH Analyses on Propionibacterium acidopropionici

	37	55	
Temperature (°C)	Aver. ± St.Dev	Aver. \pm St.Dev.	
Bacteria detected with probe Apr820 (%)	34±15.7	24±28	
Propionate Production	100-120	20-40	-
(mgCOD/gVSS)	100-120	20-40	


- *Propionibacterium acidopropionici* are more present at a temperature of 37 rather than 55° C.
- % of bacteria is correlated with the amount of propionate and they both decrease as the temperature increases



Microbial Community Analyses of the Fermentation Unit DGGE Analyses

The PCR-DGGE results showed heterogeneous bacterial population in the fermentation unit

Phylogenetic analyses

Band	Closest bacterial strain	Accession number	Percentage of identity (%)	Class	Phylum
F1	Uncultured Rhodopila sp. CJ	FJ495222	99	Alphaproteobacteria	Proteobacteria
	Uncultured Parvibaculum sp. CH	FJ495220	99	Alphaproteobacteria	Proteobacteria
F2	Uncultured bacterium	AF390917	100	Betaproteobacteria	Proteobacteria
	Uncultured beta proteobacterium	HE856465	99	Betaproteobacteria	Proteobacteria
	Comamonas sp. RPWA5.3	KC584758	98	Betaproteobacteria	Proteobacteria
	Curvibacter delicatus	NR_028713	98	Betaproteobacteria	Proteobacteria
	Acidovorax sp. DQS-01	KP126996	98	Betaproteobacteria	Proteobacteria
F3	Uncultured alpha proteobacterium	JQ919505	99	Alphaproteobacteria	Proteobacteria
	Uncultured Rhodopila sp. CJ	FJ495222	99	Alphaproteobacteria	Proteobacteria
	Uncultured Parvibaculum sp. CH	FJ495220	99	Alphaproteobacteria	Proteobacteria
F4	Uncultured Proteiniphilum sp. partial 16S rRNA gene, isolate OTU 224	LT625110	98	Cytophagia	Bacteroidetes
	Uncultured Bacteroidetes bacterium	FJ754858	98		Bacteroidetes
	Bacteroidales bacterium	GU129048	98		Bacteroidetes
F5	Uncultured alpha proteobacterium	JQ919505	99	Alphaproteobacteria	Proteobacteria
	Uncultured Rhodopila sp. CJ	FJ495222	98	Alphaproteobacteria	Proteobacteria
	Incultured Panyihaculum sp. CH	E1/195220	۵۵	Alphanroteobacteria	Proteobacteria
F6	Uncultured Bacteroidetes bacterium	CU917950	100		Bacteroidetes
	Bacteroidales bacterium	GU129081	99		Bacteroidetes
	Proteiniphilum sp. 128	KP262056	99	Cytophagia	Bacteroidetes
	Porphyromonadaceae bacterium enrichment culture	HQ133064	99	Bacteroidales	Bacteroidetes
F7	Uncultured alpha proteobacterium	JQ919505	99	Alphaproteobacteria	Proteobacteria
	Uncultured Rhodopila sp. CJ	FJ495222	99	Alphaproteobacteria	Proteobacteria
	Uncultured Parvibaculum sp. CH	F1495220	99	Alphaproteobacteria	Proteobacteria
F8	Uncultured bacterium clone	KP279931	100		
	Flavobacterium sp. enrichment culture clone SA NR2 1	GU726988	99	Flavobacteria	Bacteroidetes
	Uncultured Leadbetterella sp. SSP-AOLR-2-1	KR705991	99	Cytophagia	Bacteroidetes
	Cytophaga sp. INT-18	AB046729	98	Cytophagia	Bacteroidetes
F11	Uncultured bacterium gene	AB746716	96		
F12	Uncultured alpha proteobacterium	JQ919505	99	Alphaproteobacteria	Proteobacteria
	Uncultured <i>Rhodopila</i> sp. CJ	FJ495222	98	Alphaproteobacteria	Proteobacteria
	Uncultured Parvibaculum sp. CH	FJ495220	98	Alphaproteobacteria	Proteobacteria
F14	Uncultured Saprospiraceae bacterium	KP717501	100	Sphingobacteria	Bacteroidetes
	Uncultured Haliscomenobacter sp. C-115	JX415430	99	Sphingobacteria	Bacteroidetes
F15	Uncultured <i>Clostridium</i> sp. D7	KM494503	96	Clostridia	Firmicutes

2nd International Resource Recovery Conference

UNIVERSITÀ di **VERONA**

Focus on cellulolytic activity

Firmicutes

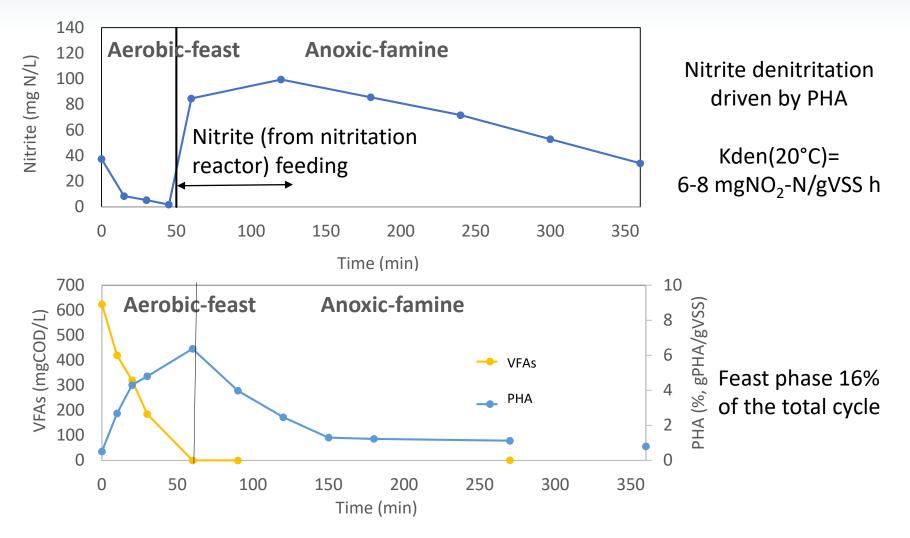
Firmicutes, (e.g. like Clostridium and Bacillus) are able to produce cellulases such as carboxymethyl cellulase (CMCase). It plays an important role to hydrolyse cellobiose to fermentable glucose

Bacteroidetes

Bacteroidetes are able to decompose long chained polymers such as cellulose and so contribute to the hydrolysis step in fermentation.

Operating conditions for the PHA-storing community selection

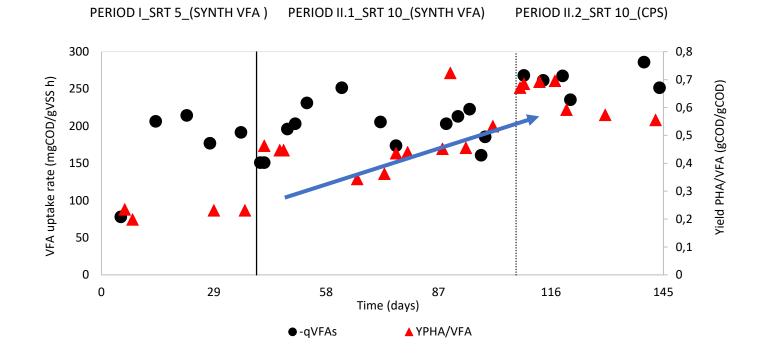
Parameter	Period I (0-39 days)	Period II.1 (40-106	Period II.2 (107-145
		days)	days)
vNLR (kgN/m ³ d)	0,610	0,480	0,56
vOLR(kgCOD/m ³ d)	1,3	1,32	1,2
HRT (d)	1,5	1,1	1,2
Aerobic/Anoxic	1	0,44	0,10-0,20
SRT (d)	5	7-10	7-10
Carbon source	VFAs from synthetic	VFAs from synthetic	VFAs from real
	acetic and propionic	acetic and propionic	cellulosic primary
	acid	acid	sludge (C.P.S)
Nitrified anaerobic	NO2 and NH4+	NO2 and NH4+ from	NO2 and NH4+ from
supernatant	from synthetic	synthetic anaerobic	real anaerobic
	anaerobic supernatant	supernatant	supernatant



2nd International Resource Recovery Conference

IVERSITÀ **/erona**

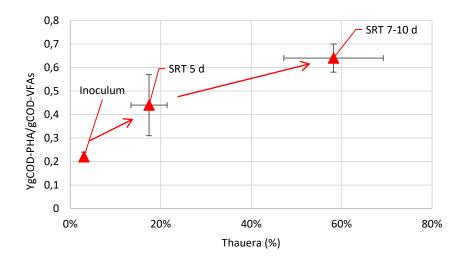
Selection of PHA-storing microorganisms: S.C.E.P.P.H.A.R. cycle

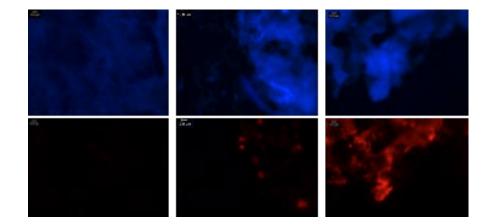


2nd International Resource Recovery Conference

Performance of the selection of PHA-storing microrganisms

From the day 40, the $Y_{PHA/VFA}$ gradually increased (from 0.22 to 0.51 gCOD_{PHA}/gCOD_{VFA}), reaching the better results when the CPS was used as C-source in the period II.2 (up to 0.65 gCOD_{PHA}/gCOD_{VFA}).



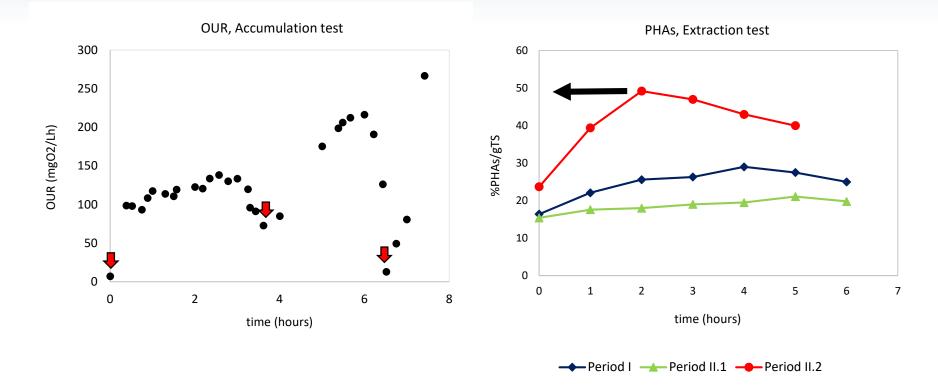


Analyses of the microbial community

Link between process performance characteristics and microbial population

Significant increase of <u>**Thauera</u>** concentration from 3 ± 0 (Period I) to $58\pm11\%$ (Period II.2), according with the increase of the PHA storage yields at SRT of 7-10 days.</u>

The increase of the $Y_{PHA/VFA}$ from 0.42 (with SRT 5 days) to 0.64 (with SRT 7-10) gCOD_{PHA}/gCOD_{VFAs} could be attributed to the presence of other type of organisms such as Paracoccus and Azoarcus.



Accumulation and PHAs Extraction

- The presence of carbon substrate was monitored via the Oxygen Uptake Rate (O.U.R) profiles;
- No significant differences between the period I and II.1 in terms of %PHAs/gTS (25% PHA/gTS);
- The carbon source from cellulosic sludge maximized the PHAs content up to 50 %PHA/gTS.

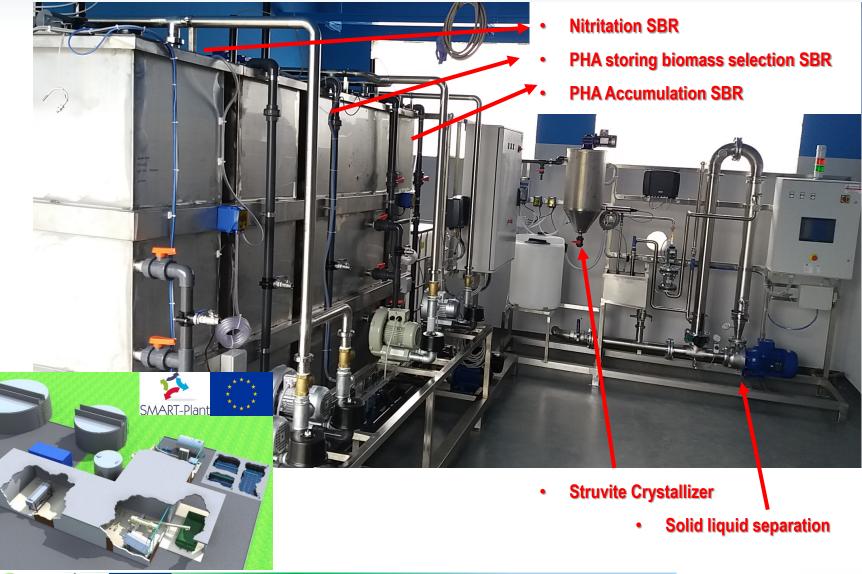
From SCEPPHAR 1.0 to 2.0 (using cellulosic sludge)

Parameter	Original configuration	Period II.2 (107-145)
	SRT 15 days (Frison et	SRT 10 days (current
	al., EST, 2015)	study)
Carbon Source	VFAs from mix sludge	VFAs from real cellulosic
	fermentation	primary sludge
Denitrification efficiency (%)	$89,4 \pm 4$	86,21 ± 4,85
F/M (kgCOD/KgMVLSS)	$0,37 \pm 0,07$	$0,63 \pm 0,09$
feast/famine	0,13	$0,10 \pm 0,01$
-qVFA (mgCOD/gVSS h)	239 ± 7	260,24 ± 18,77
<u>Y_{PHA/VFAs} (gCOD-PHA/gCOD-VFA)</u>	<u>0,42 ± 0,03</u>	<u>0,64 ± 0,06</u>

2nd International Resource Recovery Conference

IIVERSITÀ **VERONA**

Conclusions: via-nitrite PHA production


- The fermentation of cellulosic primary sludge from sieved wastewater provides a suitable source of propionate-rich VFAs for the PHA production;
- Aerobic/Feast with Anoxic/Famine regime was coupled with the vianitrite route to treat high nitrogenous anaerobic effluent;
- After 2 hours of accumulation, the PHA content was as much as 50% (gPHA/gTVS).
- Struvite recovery from cellulosic primary sludge can be a strategy to promote the PHA storage during the accumulation stage.
- The Sidestream S.C.E.P.P.H.A.R. is the SMARTech5 of the Horizon2020 Smart-Plant which will be scaled up at pilot scale (potential 0.5-0.8 kgPHA/d) within the WWTP of Carbonera (TV);

SCEPPHAR pilot scale at the Carbonera WWTP (Smartech 5)

2nd International Resource Recovery Conference

JNIVERSITÄ

Supported by the Horizon 2020 Framework Programme of the European Union

THANK YOU, AND FOLLOW US DELIVERING CIRCULAR ECONOMY!

www.smart-plant.eu

